本文为数盟原创译文,欢迎转载,注明出处“数盟社区”即可
摘自 Vincent Granvi lle
资源
1.用贝叶斯模型计算我的妻子是否怀孕
http://www.r-bloggers.com/a-bayesian-model-to-calculate-whether-my-wife-is-pregnant-or-not
2.在基础R中使用插值法和平滑功能
http://www.r-bloggers.com/interpolation-and-smoothing-functions-in-base-r/
3.数据兵工厂里的武器:R vs Spark 【这个链接好像挂了~】
http://www.crayondata.com/blogs/tools-in-the-data-armoury-r-vs-spark/
4.最好的大数据、数据科学、数据挖掘和机器学习播客视频大全
http://www.kdnuggets.com/2015/06/best-big-data-data-science-data-mining-machine-learning-podcasts.html
5.数据科学的线性模型导论
http://multithreaded.stitchfix.com/blog/2015/10/12/intro-linear-models/
6.黑客读物:数据统计
http://101.datascience.community/2015/10/21/statistics-for-hackers-slides-by-jake-vanderplas/
7.Apache Spark-执行概要
https://www.linkedin.com/pulse/apache-spark-executive-summary-alan-brown
8.随机vs非随机:如何叙述差异
http://www.kdnuggets.com/2015/10/random-pseudorandom.html
9.面向时间数据可视化技术的可视化调查**
http://survey.timeviz.net/
10.Python机器学习开源项目Top20
http://www.kdnuggets.com/2015/06/top-20-python-machine-learning-open-source-projects.html
11.区分付费内容(原生广告)和非付费内容
http://blog.kaggle.com/2015/10/30/dato-winners-interview-2nd-place-mortehu/
12.专业数据玩家必读:100篇开源大数据架构论文
https://www.linkedin.com/pulse/100-open-source-big-data-architecture-papers-anil-madan
文章
1.10个吸引人的数据可视化例子**
http://blog.hubspot.com/marketing/great-data-visualization-examples
2.智能应用程序(iA)-入门
https://ia.com/intelligent-applications-primer/
3.大数据-在IA中不再神秘**
https://ia.com/big-data-not-the-mystical-talisman-in-ia/
4.使用数据科学技能和科学方法的见解
http://businessoverbroadway.com/getting-insights-using-data-science-skills-and-the-scientific-method
5.算法经济
http://exchangemagazine.financial.thomsonreuters.com/articles/the-algorithm-economy
6.数据科学家……是在说我吗?!
http://thinktostart.com/a-data-scientist-who-me/
7.六种视角看人工智能的状态
https://medium.com/@VentureScanner/the-state-of-artificial-intelligence-in-six-visuals-8bc6e9bf8f32
8.大数据分析自动化
http://news.mit.edu/2015/automating-big-data-analysis-1016
9.福特如何使用大数据改变我们使用汽车的方式
http://www.forbes.com/sites/joannmuller/2015/10/22/how-ford-is-using-big-data-to-change-the-way-we-use-our-cars/
10.大地图告诉你美国如何发电**
https://www.washingtonpost.com/graphics/national/power-plants/
11.为什么DataViz会在无意中助长不平等**
http://stephanieevergreen.com/dataviz-inequality_pt1/
12.不断发展的信息图表:GIFographic来啦 **
http://immediatefuture.co.uk/blog/the-evolving-infographic-here-comes-the-gifographic/
13.数据科学的巨大创新尚未到来
http://blogs.gartner.com/alexander-linden/2015/08/27/massive-innovations-in-data-science-yet-to-come/
14.为什么Tracy-Widom的神秘统计法如此常用?
http://www.wired.com/2014/10/tracy-widom-mysterious-statistical-law/
15.我如何用Alteryx修复客户端数据库**
https://3danim8.wordpress.com/2015/10/09/how-alteryx-allowed-me-to-fix-problems-in-a-customer-created-database/
16.数据科学家并不是生来平等
http://businessoverbroadway.com/investigating-data-scientists-their-skills-and-team-makeup
17.物联网:缺失的部件
https://www.linkedin.com/pulse/20140923171256-1080580-internet-of-things-the-missing-pieces
18.招聘数据科学家:要找什么?
http://www.kdnuggets.com/2014/09/hiring-data-scientist-what-to-look-for.html
19.Nate Silver:大数据已经到达顶峰,这是一件好事
http://data-informed.com/nate-silver-big-data-has-peaked-and-thats-a-good-thing/
祝:原标题为“30个与大数据有关的非常不错的资源和文章”,实为31个,故本文标题进行了修改。带*的是作者推荐的重点内容。
评论留言